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Lecture 14 – Decision Trees
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Inductive Learning

● A form of supervised learning, where we are given the 
correct (or approximately correct) value of the function for 
particular inputs

● Each example is of the form (x, f(x)), where x is the 
input(s) and f(x) is the value of the function for x

● Given a set of examples (x, f(x)), generate a function h(x) 
which approximates f

● h is called a hypothesis
● A hypothesis should be

● consistent (i.e., should fit the data)
● generalise well (predict unseen examples correctly)



  

Decision Trees

● Decision tree learning is one of the simplest forms of 
inductive learning

● Decision trees often represent boolean functions - input is 
an object or situation described by a set of attributes; 
value is a yes/no decision

● Aim is to find a compact representation of the example set 
that also correctly predicts on unseen cases (the test set)

● Proceed by repeatedly choosing the most informative 
property to split the samples on the value



  

Classification vs Regression

● In a decision tree, each example is of the form (x, f(x)), 
where the input x is described by a set of attributes and f(x) 
is the decision for the input x

● The attributes and the output (decision) can be discrete or 
continuous

● Learning a discrete valued function is called classification 
learning, as each input is associated with one of finitely 
many classes

● Learning a continuous function is called regression

● Focus on boolean classification, where each input is 
classified as being a member (or not) of a single class, or 
the output is a yes/no decision



  

How Decision Trees Work

● Examples are described by a set of attributes
● A decision tree classifies an example by performing a 

number of tests on these attributes
● Each internal node in the tree corresponds to a test of the 

value of one of the attributes
● Arcs from the node are labelled with the possible results 

of the test
● A test of an attribute appears at most once on any given 

branch of the tree
● Each leaf node specifies a value to be returned (a 

classification of the input) if that leaf is reached



  

Example: Waiting for a Table

● Problem is whether to wait for a table if a restaurant currently 
has no free tables

● Aim to learn a definition for the goal predicate (decision) WillWait

● In a given situation, if WillWait is true, we will wait for a table; 
otherwise we will try another restaurant

● We assume that we have lsome examples of previous situations 
where we had to decide whether to wait for a table, and what out 
decision was in that situation

● We assume that our previous decisions are correct - aim is just 
to learn the function to decide whether to wait for a table



  

Example: Waiting for a Table

● We choose the following attributes to describe the examples

Alternate: whether there is another restaurant nearby

Bar: whether the restaurant has a bar to wait in

Fri/Sat: true on Fridays and Saturdays

Hungry: whether we are hungry

Patrons: how many people are in the restaurant (None, Some, Full)

Price: restaurant’s price range ($, $$, $$$)

Raining: whether it’s raining outside

Reservation: whether we made a reservation

Type: the kind of restaurant (French, Italian, Thai, burger)

WaitEstimate: likely time to we have to wait (0-10 mins, 10-30, 30-

60, > 60)



  

Example Decision Tree



  

Training Examples for WillWait



  

Constructing a (Trivial) 
Decision Tree

● Trivial solution - construct a decision tree that has one path 
to a leaf for each example

● Each path tests an attribute in turn and branches as in the 
input example until we reach the leaf which has the 
classification of the example

● This just memorises the cases and does not find any pattern 
in the examples - can’t generalise to examples not in the 
training set

● Aim is to find the smallest decision tree that is consistent 
with the examples

● Finding the smallest tree is intractable - however with 
heuristics we can find a small decision tree



  

Constructing a Decision Tree

● Split the training set into positive examples (the ones for which 
WillWait is true) and negative examples (WillWait is false)

● Find the most important/informative attribute and make this the 
root test

● After the first attribute test splits the examples, each outcome is 
a new decision tree learning problem with fewer examples and 
one fewer attribute

● After splitting the examples on root attribute, choose the most 
informative attribute to split any remaining unclassified examples

● Repeat until all examples are classified



  

Choosing the Most Informative 
Attribute

● The most informative attribute is the one which makes the most 
difference to the classification of an example

● Type is an uninformative attribute as each possible outcome 
gives approximately the same proportion of positive and 
negative examples as the original set

● Patrons is an informative attribute: it allows us to correctly 
classify six examples

● for all examples where Patrons = None, WillWait is false
● for all example where Patrons = Some, WillWait is true
● leaving only six examples still to classify (those where Patrons = Full)

● Split the remaining unclassified examples on the most 
informative attribute for those examples (Hungry in this case)



  

Choosing the Most Informative 
Attribute



  

Decision Tree Learning Algorithm

● At each stage of the recursion, there are four 
cases to consider:
● if all the remaining examples are positive (or 

negative) we are done - we can answer Yes or No
● if there are both positive and negative examples, 

choose the best attribute to split them
● if none of the examples are true or false for any of 

the remaining attribute values, it means that no 
such example has been observed and we return a 
default value calculated from the majority 
classification at the node’s parent



  

Decision Tree Learning Algorithm

● If there are both positive and negative examples but no 
attributes left, we have a problem

● The examples have the same description (attribute values 
along the path to the current node), but different 
classifications
● some of the data are incorrect (noise)
● the attributes don’t give enough information to completely 

describe the situation
● the domain is nondeterministic

● One solution is to return the “majority vote”: if there are 
more positive than negative examples remaining, make 
this a Yes leaf node, and vice versa



  

Example: Induced Tree



  

Example: Induced Tree

● Hypothesis is consistent and considerably simpler than the 
original tree used to generate the examples

● Induced tree does not contain tests for Alternative, Bar, Price, 
Raining, Reservation and WaitEstimate as it’s possible to 
classify all the examples without them

● Learning algorithm looks at examples, not at the true function, 
so the resulting decision tree will probably make mistakes

● For example, the training set did not include a case where the 
wait is 0-10 minutes and the restaurant is full, and many other 
combinations



  

Informative Attributes

● We can make the notion of an “informative” 
attribute precise using information theory

● The amount of information required for a 
correct classification is given by

where p is the number of positive examples in 
the training set and n is the number of negative 
examples



  

Informative Attributes

● An attribute A divides the training set into v 
subsets, where v is the number of possible 
values of the attribute

● If each subset i has p
i
 positive examples and n

i
 

negative examples, after testing by attribute A 
we need an additional

bits of information to classify the example



  

Informative Attributes

● The information gain from the attribute test A is 
the difference between the original information 
requirement and the new requirement

● At each stage of the recursion, we choose the 
attribute with the largest information gain



  

Expressiveness of Decision Trees

● Decision tree describes a relationship between the goal 
predicate and a logical combination of attribute values

● Any propositional boolean function can be written as a decision 
tree

● For many boolean functions, decision trees provide a compact 
representation

● For some boolean functions, a decision tree will be 
exponentially large, e.g.,

● parity function (returns 1 iff an even number of its inputs are 1)
● majority function (returns 1 iff more than half its inputs are 1)



  

Exercise: Spam Filtering 
Decision Tree

● A decision tree is to be used to classify email messages into 
those that are spam and those that are not

● Aim is to learn a definition of the goal predicate Spam - if 
Spam is true, then a message is spam

● The examples are described using the following attributes:

Attach: the message has attachments

Image: the message contains images

AddressBk: the sender is in the recipient’s address book

Subject: the subject of the message which can take the values 
Prize (the recipient has won a prize); Goods (the message offers 
goods for sale); and Other (any other subject)

● Induce a decision tree from the following set of examples



  

Exercise: Spam Filtering Examples



  

Exercise: Spam Filtering Attributes

● Consider each attribute in turn:

● When Attach is true, in 3 cases a message is spam and 0 cases it is not; when 
Attach is false, in 2 cases a message is spam and in 3 cases it is not

● When Images is true, in 2 cases a message is spam, and 2 cases it is not; 
when Images is false, in 3 cases a message is spam and 1 case it is not

● When AddressBk is true, in 2 cases a message is spam and in 1 case it is not; 
when AddressBk is false, in 3 cases a message is spam and in 2 cases it is 
not

● Subject:
● for all 3 cases where Subject = Prize, Spam is true

● for all 2 cases where Subject = Other, Spam is false

● leaving 3 examples still to classify

● Subject is the most informative attribute



  

Exercise: Spam Filtering Attributes



  

Exercise: Spam Filtering Examples



  

Exercise: Spam Filtering Attributes

● Repeat the process for the three remaining cases, for each of the 
remaining attributes (Attach, Images, and AddressBk)

● In none of the cases is Attach true; when Attach is false, in 2 cases a 
message is spam and in 1 case it is not

● When Images is true, in 1 case a message is spam and in 1 case it is not; 
when Images is false, in 1 case a message is spam

● When AddressBk is true, in all cases (1) a message is not spam; when 
AddressBk is false, in all cases (1) a message is spam

● AddressBk is therefore the most informative remaining attribute and is 
sufficient to complete the classification



  

Exercise: Spam Filtering Attributes
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