

Artificial Intelligence

Lecture 14 – Decision Trees

Outline

● Classification and regression
● Inducing decision trees
● Example: waiting for a table in a restaurant
● Choosing informative attributes
● Expressiveness of decision trees
● Exercise: spam filtering

Inductive Learning

● A form of supervised learning, where we are given the
correct (or approximately correct) value of the function for
particular inputs

● Each example is of the form (x, f(x)), where x is the
input(s) and f(x) is the value of the function for x

● Given a set of examples (x, f(x)), generate a function h(x)
which approximates f

● h is called a hypothesis
● A hypothesis should be

● consistent (i.e., should fit the data)
● generalise well (predict unseen examples correctly)

Decision Trees

● Decision tree learning is one of the simplest forms of
inductive learning

● Decision trees often represent boolean functions - input is
an object or situation described by a set of attributes;
value is a yes/no decision

● Aim is to find a compact representation of the example set
that also correctly predicts on unseen cases (the test set)

● Proceed by repeatedly choosing the most informative
property to split the samples on the value

Classification vs Regression

● In a decision tree, each example is of the form (x, f(x)),
where the input x is described by a set of attributes and f(x)
is the decision for the input x

● The attributes and the output (decision) can be discrete or
continuous

● Learning a discrete valued function is called classification
learning, as each input is associated with one of finitely
many classes

● Learning a continuous function is called regression

● Focus on boolean classification, where each input is
classified as being a member (or not) of a single class, or
the output is a yes/no decision

How Decision Trees Work

● Examples are described by a set of attributes
● A decision tree classifies an example by performing a

number of tests on these attributes
● Each internal node in the tree corresponds to a test of the

value of one of the attributes
● Arcs from the node are labelled with the possible results

of the test
● A test of an attribute appears at most once on any given

branch of the tree
● Each leaf node specifies a value to be returned (a

classification of the input) if that leaf is reached

Example: Waiting for a Table

● Problem is whether to wait for a table if a restaurant currently
has no free tables

● Aim to learn a definition for the goal predicate (decision) WillWait

● In a given situation, if WillWait is true, we will wait for a table;
otherwise we will try another restaurant

● We assume that we have lsome examples of previous situations
where we had to decide whether to wait for a table, and what out
decision was in that situation

● We assume that our previous decisions are correct - aim is just
to learn the function to decide whether to wait for a table

Example: Waiting for a Table

● We choose the following attributes to describe the examples

Alternate: whether there is another restaurant nearby

Bar: whether the restaurant has a bar to wait in

Fri/Sat: true on Fridays and Saturdays

Hungry: whether we are hungry

Patrons: how many people are in the restaurant (None, Some, Full)

Price: restaurant’s price range ($, $$, $$$)

Raining: whether it’s raining outside

Reservation: whether we made a reservation

Type: the kind of restaurant (French, Italian, Thai, burger)

WaitEstimate: likely time to we have to wait (0-10 mins, 10-30, 30-

60, > 60)

Example Decision Tree

Training Examples for WillWait

Constructing a (Trivial)
Decision Tree

● Trivial solution - construct a decision tree that has one path
to a leaf for each example

● Each path tests an attribute in turn and branches as in the
input example until we reach the leaf which has the
classification of the example

● This just memorises the cases and does not find any pattern
in the examples - can’t generalise to examples not in the
training set

● Aim is to find the smallest decision tree that is consistent
with the examples

● Finding the smallest tree is intractable - however with
heuristics we can find a small decision tree

Constructing a Decision Tree

● Split the training set into positive examples (the ones for which
WillWait is true) and negative examples (WillWait is false)

● Find the most important/informative attribute and make this the
root test

● After the first attribute test splits the examples, each outcome is
a new decision tree learning problem with fewer examples and
one fewer attribute

● After splitting the examples on root attribute, choose the most
informative attribute to split any remaining unclassified examples

● Repeat until all examples are classified

Choosing the Most Informative
Attribute

● The most informative attribute is the one which makes the most
difference to the classification of an example

● Type is an uninformative attribute as each possible outcome
gives approximately the same proportion of positive and
negative examples as the original set

● Patrons is an informative attribute: it allows us to correctly
classify six examples

● for all examples where Patrons = None, WillWait is false
● for all example where Patrons = Some, WillWait is true
● leaving only six examples still to classify (those where Patrons = Full)

● Split the remaining unclassified examples on the most
informative attribute for those examples (Hungry in this case)

Choosing the Most Informative
Attribute

Decision Tree Learning Algorithm

● At each stage of the recursion, there are four
cases to consider:
● if all the remaining examples are positive (or

negative) we are done - we can answer Yes or No
● if there are both positive and negative examples,

choose the best attribute to split them
● if none of the examples are true or false for any of

the remaining attribute values, it means that no
such example has been observed and we return a
default value calculated from the majority
classification at the node’s parent

Decision Tree Learning Algorithm

● If there are both positive and negative examples but no
attributes left, we have a problem

● The examples have the same description (attribute values
along the path to the current node), but different
classifications
● some of the data are incorrect (noise)
● the attributes don’t give enough information to completely

describe the situation
● the domain is nondeterministic

● One solution is to return the “majority vote”: if there are
more positive than negative examples remaining, make
this a Yes leaf node, and vice versa

Example: Induced Tree

Example: Induced Tree

● Hypothesis is consistent and considerably simpler than the
original tree used to generate the examples

● Induced tree does not contain tests for Alternative, Bar, Price,
Raining, Reservation and WaitEstimate as it’s possible to
classify all the examples without them

● Learning algorithm looks at examples, not at the true function,
so the resulting decision tree will probably make mistakes

● For example, the training set did not include a case where the
wait is 0-10 minutes and the restaurant is full, and many other
combinations

Informative Attributes

● We can make the notion of an “informative”
attribute precise using information theory

● The amount of information required for a
correct classification is given by

where p is the number of positive examples in
the training set and n is the number of negative
examples

Informative Attributes

● An attribute A divides the training set into v
subsets, where v is the number of possible
values of the attribute

● If each subset i has p
i
 positive examples and n

i

negative examples, after testing by attribute A
we need an additional

bits of information to classify the example

Informative Attributes

● The information gain from the attribute test A is
the difference between the original information
requirement and the new requirement

● At each stage of the recursion, we choose the
attribute with the largest information gain

Expressiveness of Decision Trees

● Decision tree describes a relationship between the goal
predicate and a logical combination of attribute values

● Any propositional boolean function can be written as a decision
tree

● For many boolean functions, decision trees provide a compact
representation

● For some boolean functions, a decision tree will be
exponentially large, e.g.,

● parity function (returns 1 iff an even number of its inputs are 1)
● majority function (returns 1 iff more than half its inputs are 1)

Exercise: Spam Filtering
Decision Tree

● A decision tree is to be used to classify email messages into
those that are spam and those that are not

● Aim is to learn a definition of the goal predicate Spam - if
Spam is true, then a message is spam

● The examples are described using the following attributes:

Attach: the message has attachments

Image: the message contains images

AddressBk: the sender is in the recipient’s address book

Subject: the subject of the message which can take the values
Prize (the recipient has won a prize); Goods (the message offers
goods for sale); and Other (any other subject)

● Induce a decision tree from the following set of examples

Exercise: Spam Filtering Examples

Exercise: Spam Filtering Attributes

● Consider each attribute in turn:

● When Attach is true, in 3 cases a message is spam and 0 cases it is not; when
Attach is false, in 2 cases a message is spam and in 3 cases it is not

● When Images is true, in 2 cases a message is spam, and 2 cases it is not;
when Images is false, in 3 cases a message is spam and 1 case it is not

● When AddressBk is true, in 2 cases a message is spam and in 1 case it is not;
when AddressBk is false, in 3 cases a message is spam and in 2 cases it is
not

● Subject:
● for all 3 cases where Subject = Prize, Spam is true

● for all 2 cases where Subject = Other, Spam is false

● leaving 3 examples still to classify

● Subject is the most informative attribute

Exercise: Spam Filtering Attributes

Exercise: Spam Filtering Examples

Exercise: Spam Filtering Attributes

● Repeat the process for the three remaining cases, for each of the
remaining attributes (Attach, Images, and AddressBk)

● In none of the cases is Attach true; when Attach is false, in 2 cases a
message is spam and in 1 case it is not

● When Images is true, in 1 case a message is spam and in 1 case it is not;
when Images is false, in 1 case a message is spam

● When AddressBk is true, in all cases (1) a message is not spam; when
AddressBk is false, in all cases (1) a message is spam

● AddressBk is therefore the most informative remaining attribute and is
sufficient to complete the classification

Exercise: Spam Filtering Attributes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

